The mechanism of the trichomonicidal activity of metronidazole and other 5-nitroimidazoles appears to depend on the ferredoxin-mediated reduction of their nitro group, with generation of a reactive metabolite or metabolites which interact with DNA leading to a subsequent inhibition of nucleic acid and protein synthesis. Redox cycling of these compounds under aerobic conditions appears to be a detoxification reaction by inhibiting net reduction of the drugs, thereby inhibiting their uptake. On the other hand, redox cycling of nitrofurans or other compounds with more positive reduction potential results in formation of high steady-state concentrations of oxygen-derived metabolites that might be of toxicological significance. It seems likely that reduced metabolites of nitroimidazoles (perhaps through covalent binding to tissue macromolecules and/or thiols depletion) are also involved in the nitroimidazoles' toxic effects to animal tissues and in their mutagenic and carcinogenic action.