A single trapped Ra + (Z = 88) ion provides a very promising route towards a most precise measurement of Atomic Parity Violation (APV), since APV effects grow faster than Z 3 . This experiment promises the best determination of the electroweak coupling constant at the lowest accessible energies. Such a measurement provides a sensitive test of the Standard Model in particle physics. At the present stage of the experiment, we focus on trapping and laser cooling stable Ba + ions as a precursor for radioactive Ra + . Online laser spectroscopy of the isotopes 209−214 Ra + in a linear Paul trap has provided information on transition wavelengths, fine and hyperfine structures and excited state lifetimes as test of atomic structure calculations. Additionaly, a single trapped Ra + ion could function as a very stable clock.