High absorption in the near-infrared (NIR) region is essential for a photoabsorbing agents to realize efficient photothermal therapy (PTT) for cancer. Here, a novel hollow Au-Cu nanocomposite (HGCNs) is developed, which displays a significantly enhanced NIR surface plasmon resonance absorption and photothermal transduction efficiency. Besides, fluorescent polymer dots poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (PFBT) and chemotherapeutic mammalian target of rapamycin (mTOR) inhibitor agent rapamycin (RAPA) are attached onto the HGCNs (RAPA/PFBT-HGCNs) for real-time NIR fluorescence tracing and combined PTT/antiangiogenesis therapy. In particular, due to the fluorescence resonance energy transfer effect, RAPA/PFBT-HGCNs can act as NIR-activatable on/off probe system for real-time tracing of tumor tissues. A standard in vitro cellular uptake study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, dual-staining study, and flow cytometry assay reveal that the RAPA/PFBT-HGCNs combined with NIR laser exhibit higher drug accumulation and cytotoxicity in both tumor cells and epithelial cells. Moreover, the margins of tumor and normal tissue can be accurately indicated by NIR-stimulated dequenched PFBT after 24 h intravenous administration. Further, tumor growth can be considerably hampered by the optimal formulation plus laser treatment with relatively lower side effects. Consequently, the work highlights the real-time tracing and enhanced PTT/antiangiogenesis therapy prospects of the established HGCNs with tremendous potential for treatment of cancer.