The blue-to-red chromatic phase transition of polydiacetylene (PDA) is accompanied by the twist and rearrangement of its side chains, which results in shortening of the conjugation length in the backbone. However, how these morphological changes affect its mechanical properties remains elusive. In this work, force spectroscopy mapping by atomic force microscopy was employed to quantify mechanical parameters of PDA thin films such as breakthrough force and Young's modulus at the monomer, blue, and red phases during the chromatic transition. We found that the breakthrough force increased by 113% and Young's modulus decreased by 21% during the blue-to-red transition, highlighting that the subtle change in the side-chain configuration has a dramatic impact on its mechanical properties.