Histone mRNA levels are cell cycle regulated, and a major regulatory mechanism is restriction of stem-loop binding protein (SLBP) to S phase. Degradation of SLBP at the end of S phase results in cessation of histone mRNA biosynthesis, preventing accumulation of histone mRNA until SLBP is synthesized just before entry into the next S phase. Degradation of SLBP requires an SFTTP (58 to 62) and KRKL (95 to 98) sequence, which is a putative cyclin binding site. A fusion protein with the 58-amino-acid sequence of SLBP (amino acids 51 to 108) fused to glutathione S-transferase (GST) is sufficient to mimic SLBP degradation at late S phase. Using GST-SLBP fusion proteins as a substrate, we show that cyclin A/Cdk1 phosphorylates Thr61. Furthermore, knockdown of Cdk1 by RNA interference stabilizes SLBP at the end of S phase. Phosphorylation of Thr61 is necessary for subsequent phosphorylation of Thr60 by CK2 in vitro. Inhibitors of CK2 also prevent degradation of SLBP at the end of S phase. Thus, phosphorylation of Thr61 by cyclin A/Cdk1 primes phosphorylation of Thr60 by CK2 and is responsible for initiating SLBP degradation. We conclude that the increase in cyclin A/Cdk1 activity at the end of S phase triggers degradation of SLBP at S/G 2 .Progression through the cell cycle is driven by a class of protein kinases, the cyclin-dependent kinases (cdk's), which are sequentially activated as cells progress from one cell cycle stage to the next. In particular, progress into S phase requires the activation of cyclin E/Cdk2, ultimately resulting in the initiation of DNA replication, and progression through mitosis requires the activation of cyclin B/Cdk1 (cdc2), resulting in nuclear envelope breakdown and chromosome condensation (27). Cyclin A/Cdk2 activity is required for continued progression through S phase (36). The targets of the cdk's are activated or inactivated by phosphorylation. A second critical regulatory mechanism for cell cycle progression is targeted proteolysis of key protein regulators (13). These include the cyclin subunits of the cdk's, critical proteins in initiation of DNA replication, and proteins responsible for maintaining chromosome pairing (6).While much is known about the events that must occur for cells to transit from G 1 to S phase and for cells to enter and exit mitosis, much less is known about the molecular events at the end of S phase, as cells progress from S to G 2 phase. S phase is characterized by replication of the chromosomes, and at the same time DNA is replicated, histone proteins must be synthesized to provide histones to assemble the newly replicated chromatin. Histone mRNAs are cell cycle regulated, and their expression is restricted to S phase. The metazoan replication-dependent histone mRNAs are the only eukaryotic cellular mRNAs that are not polyadenylated. Instead, they end in a conserved stem-loop sequence (18). Since the replication-dependent histone genes lack introns, the only processing reaction required for histone mRNA biosynthesis is cleavage of the nascent transcript to ...