Three-level converters are the most important technologies used in high power applications. Among these technologies, active neutral point clamped (ANPC) converters are mainly used for industrial applications. Meanwhile, recent developments have reduced losses and increased efficiency by using a hybrid combination of Si-IGBT and SiC-MOSFET switches to achieve hybrid ANPC (HANPC) converters. Open-circuit failure is regarded as a common and serious problem that affects the operational performance. In this paper, an effective fault-tolerant method is proposed for HANPC converters to safely re-utilize normal operation and increase the reliability of the system under fault conditions. Sequentially, regarding different topologies with reference to earlier fault tolerance methods which could not be applied to the HANPC, the proposed strategy enables continuous operation under faulty conditions effectively without using any additional devices by creating new voltage references, voltage offset, and switching sequences under the faulty conditions. Consequently, no additional costs or changes are associated with the inverter. A detailed analysis of the proposed strategy is presented highlighting the effects on the voltage, currents, and the corresponding total harmonic distortion (THD). The simulation and experimental results demonstrate the capability and effectiveness of the proposed method to maintain normal operation and eliminate the output distortion.