Among the various image fusion or pan-sharpening methods, those wavelet-based methods provide superior radiometric quality. However, the fusion processing is not only simple but also flexible, since many low-and high-frequency sub-bands are often produced in the wavelet domain. To address this issue, a novel DT-CWT (Dual-Tree Complex Wavelet Transform) proportional to the fusion method by a WZP (Wavelet Zero-Padding) is proposed. The proposed method produces a single high-frequency image in the spatial domain that is injected into the LRM (Low-Resolution Multispectral) image. Thus, a wavelet domain fusion can be simplified to spatial domain fusion. In addition, in the proposed DT-CWTP (DT-CWT Proportional) fusion method, it is unnecessary to decompose the LRM image by adopting WZP. The comparison indicates that the proposed fusion method is nearly five times faster than the DT-CWT with SW (Substitute-Wavelet) fusion method, meanwhile simultaneously maintaining the radiometric quality. The conducted experiments with WorldView-2 satellite images demonstrated promising results with the computation efficiency and fused image quality. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.