Integrated InP based modelocked lasers and pulse shapersBente, E.A.J.M.; Tahvili, M.S.; Moskalenko, V.; Latkowski, S.; Wale, M.J.; Javaloyes, J.; Landais, P.; Smit, M.K.
Published in:Integrated Optics: Devices, Materials, and Technologies XVII, San Francisco, 2013 DOI: 10.1117 Published: 01/01/2013
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACTIn this paper we present recent results obtained in the area of monolithically integrated modelocked semiconductor laser systems using generic InP based integration platform technology operating around 1550nm. Standardized components defined in this technology platform can be used to design and realize short pulse lasers and optical pulse shapers. This makes that these devices can be realized on wafers that can contain many other devices. In the area of short pulse lasers we report design studies based on measured optical amplifier performance data. This work has the ultimate goal to establish a library of widely applicable short pulse laser designs. Such lasers can include components for e.g. wavelength control. An important boundary condition on the laser design is that the laser can be located anywhere on the InP chip.In the area of pulse shaping we report on a 20 channel monolithic pulse shaper capable of phase and amplitude control in each channel. Special attention is given to the calibration of the phase modulator and amplifier settings. Pulse compression and manipulation of pulse generated from modelocked semiconductor lasers is demonstrated using a 40 GHz quantum ...