In this paper, the effect of the GeO2:TiO2 molar ratio in glass composition on the spectroscopic properties of germanate glasses was systematically investigated. The visible luminescence bands associated with characteristic 1D2 → 3H4 (red), 5S2, 5F4 → 5I8 (green), and 1D2 → 3F4 (blue) transitions of Pr3+, Ho3+, and Tm3+ ions in systems modified by TiO2 were well observed, respectively. It was found that the luminescence intensity of glasses containing Pr3+ and Ho3+ ions increases, whereas, for Tm3+-doped systems, luminescence quenching with increasing content of TiO2 was observed. Based on Commission Internationale de I’Eclairage (CIE) chromaticity coordinates (x, y) analysis, it was demonstrated that the value of chromaticity coordinates for all glasses depends on the GeO2:TiO2 molar ratio. The addition of TiO2 to system compositions doped with Tm3+ ions shifts the (x, y) to the center of the CIE diagram. However, chromaticity coordinates evaluated for glasses containing Pr3+ ions move to a purer red color. Our results confirm that the spectroscopic properties of the studied glasses strongly depend on TiO2 content. Moreover, it can be stated that germanate-based glass systems modified by TiO2 can be used for optoelectronics in RGB technology as red (Pr3+), green (Ho3+), and blue (Tm3+) emitters.