Financial system is essentially chaotic and unstable if there is not any external inputs. By means of Lyapunov function method, design of switching law, novel fuzzy assumption, $L^p$ estimation technique and Laplace semigroup theory, the author presents the boundedness and LMI-based (globally) asymptotical input-to-state stability criteria of financial systems. Particularly, the globally asymptotical stability in the meaning of switching implies that when the time $t$ is big enough, the dynamic of any subsystem must approach its unique equilibrium point. Besides, the global financial crisis often erupts periodically, which illuminates that the global stability in the classical sense is actually meaningless. So the stability in the meaning of switching proposed in this paper is suitable and appropriate. Numerical examples illuminate the effectiveness of the obtained results.