In order to improve the neurological recovery of hand neurorehabilitation, target-oriented, intensive, repetitive activities of daily living are used, such as training with recognition of hand gestures during robot-aided exercise. In this article, a cascade control algorithm integrating electromyography bio-feedback into hand gesture recognition is proposed. The outer loop is the trajectory motion tracking with Kinect-based gesture decoding classifier, and the inner loop is torque control with electromyography bio-feedback in the real time. This proposed method improves the tracking accuracy. The tracking error is effectively reduced from 70.56 to 28.07 in the simulation experiment. The initial test proves that the proposed method with additional torque control allows active assistance on the human-machine interface of other rehabilitation robots in future.