In this paper, we develop a discrete unified gas kinetic scheme (DUGKS) for general nonlinear convection-diffusion equation (NCDE), and show that the NCDE can be recovered correctly from the present model through the Chapman-Enskog analysis. We then test the present DUGKS through some classic convectiondiffusion equations, and find that the numerical results are in good agreement with analytical solutions and the DUGKS model has a second-order convergence rate. Finally, as a finite-volume method, DUGKS can also adopt the nonuniform mesh. Besides, we performed some comparisons among the DUGKS, finite-volume lattice Boltzmann model (FV-LBM), single-relaxation-time lattice Boltzmann model (SLBM) and multiple-relaxation-time lattice Boltzmann model (MRT-LBM). The results show that the DUGKS model is more accurate than FV-LBM, more stable than SLBM, and almost has the same accuracy as the MRT-LBM. Besides, the using of non-uniform mesh may make DUGKS model more flexible.