ObjectivesTo evaluate whether preoperative breast dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging kinetic features, assessed using computer-aided diagnosis (CAD), can predict survival outcome and tumor aggressiveness in patients with invasive breast cancer.Materials and methodsBetween March and December 2011, 301 women who underwent preoperative DCE MR imaging for invasive breast cancer, with CAD data, were identified. All MR images were retrospectively evaluated using a commercially available CAD system. The following kinetic parameters were prospectively recorded for each lesion: initial peak enhancement, the proportion of early phase medium and rapid enhancement, and the proportion of delayed phase persistent, plateau, and washout enhancement. The Cox proportional hazards model was used to determine the association between the kinetic features assessed by CAD and disease-free survival (DFS). The peak signal intensity and kinetic enhancement profiles were compared with the clinical-pathological variables.ResultsThere were 32 recurrences during a mean follow-up time of 55.2 months (range, 5–72 months). Multivariate analysis revealed that a higher peak enhancement (DFS hazard ratio, 1.004 [95% confidence interval (CI): 1.001, 1.006]; P = .013) on DCE MR imaging and a triple-negative subtype (DFS hazard ratio, 21.060 [95% CI: 2.675, 165.780]; P = .004) were associated with a poorer DFS. Higher peak enhancement was significantly associated with a higher tumor stage, clinical stage, and histologic grade.ConclusionsPatients with breast cancer who showed higher CAD-derived peak enhancement on breast MR imaging had worse DFS. Peak enhancement and volumetric analysis of kinetic patterns were useful for predicting tumor aggressiveness.