Protein post-translational modifications (PTMs) regulate protein functions but remain poorly characterized in Nannochloropsis. This study examined three PTMs: lysine acetylation (Kac), lysine β-hydroxybutyrylation (Kbhb), and phosphorylation. Using LC-MS/MS, we identified 4571 Kac sites, 7812 Kbhb sites, and 6237 phosphorylation sites across 2455, 3109, and 2786 proteins, respectively. Subcellular localization analysis revealed significant overlaps between Kac and Kbhb proteins, primarily in the chloroplast, cytosol, and nucleus, while phosphorylated proteins were predominantly located in the nucleus and chloroplast. Motif analysis highlighted specific amino acid enrichments around modification sites, with several motifs conserved. Additionally, 529 proteins harbored all three PTMs, underscoring the potential regulatory interplay. Kac, Kbhb, and phosphorylated proteins were particularly abundant in glycolysis, the TCA cycle, carbon fixation, and lipid metabolism pathways, influencing energy production and lipid accumulation. Based on previous transcriptome data under nutrient-limited conditions, these frequently modified key enzymes appear to be vital components in the response to abiotic stress. The presence of histone modifications related to Kac and Kbhb might also point to the epigenetic regulation in gene expression and stress adaptation. This comprehensive PTM landscape in N. oceanica provides a foundation of valuable insights into future metabolic engineering and biotechnological applications.