Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca 2+ signaling may play a central role in this process. Free Ca 2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca 2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca 2+ uniporter machinery in mammals. MICU binds Ca 2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca 2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca 2+ in the matrix. Furthermore, Ca 2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca 2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca 2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca 2+ uptake by moderating influx, thereby shaping Ca 2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca 2+ signaling in plants.
Antibody response following Omicron infection is reported to be less robust than that to other variants. Here we investigated how prior vaccination and/or prior infection modulates that response. Disease severity, antibody responses and immune transcriptomes were characterized in four groups of Omicron-infected outpatients (n=83): unvaccinated/no prior infection, vaccinated/no prior infection, unvaccinated/prior infection and vaccinated/prior infection. The percentage of patients with asymptomatic or mild disease was highest in the vaccinated/no prior infection group (87%) and lowest in the unvaccinated/no prior infection group (47%). Significant anti-Omicron spike antibody levels and neutralizing activity were detected in the vaccinated group immediately after infection but were not present in the unvaccinated/no prior infection group. Within two weeks, antibody levels against Omicron, increased. Omicron neutralizing activity in the vaccinated group exceeded that of the prior infection group. No increase in neutralizing activity in the unvaccinated/no prior infection group was seen. The unvaccinated/prior infection group showed an intermediate response. We then investigated the early transcriptomic response following Omicron infection in these outpatient populations and compared it to that found in unvaccinated hospitalized patients with Alpha infection. Omicron infected patients showed a gradient of transcriptional response dependent upon whether or not they were previously vaccinated or infected. Vaccinated patients showed a significantly blunted interferon response as compared to both unvaccinated Omicron infected outpatients and unvaccinated Alpha infected hospitalized patients typified by the response of specific gene classes such as OAS and IFIT that control anti-viral responses and IFI27, a predictor of disease outcome.
SUMMARY The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post‐translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ‐amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry‐based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin–Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.