We investigate the response of polycrystalline HMX 3,5,3,5, under impact loading through a 3-dimensional mesoscale model that explicitly accounts for anisotropic elasticity, crystalline plasticity, and heat conduction. This model is used to quantify the variability in temperature and stress fields due to random distributions of the orientations of crystalline grains in HMX under the loading scenarios considered. The simulations carried out concern the response of fully dense HMX polycrystalline ensembles under impact loading at imposed boundary velocities from 50 to 400 m/s. The polycrystalline ensemble studied consists of a geometrically arranged distribution of bi-modally sized and shaped grains. To quantify the effect of crystalline slip, two models with different numbers of available slip systems are used, reflecting differing characterizations of the slip systems of the HMX molecular crystal in the literature. The effects of microstructure and anisotropy on the distribution of heating and stress evolution are investigated. The results obtained indicate that crystalline response anisotropy at the microstructure level plays an important role in influencing both the overall response and the localization of stress and temperature. The overall longitudinal stress is up to 16% higher and the average temperature rise is only half in the material with fewer potential slip systems compared to those in the material with more available slip systems. Local stresses can be as high as twice the average stresses. The results show that crystalline anisotropy induces significant heterogeneities in both mechanical and thermal fields that previously have been neglected in the analyses of the behavior of HMX-based energetic materials. C 2014 Author(s)