Over the last decades, energy and pollution control policies combined with structural changes in the economy decoupled emission trends from economic growth, increasingly also in the developing world. It is found that effective implementation of the presently decided national pollution control regulations should allow further economic growth without major deterioration of ambient air quality, but will not be enough to reduce pollution levels in many world regions. A combination of ambitious policies focusing on pollution controls, energy and climate, agricultural production systems and addressing human consumption habits could drastically improve air quality throughout the world. By 2040, mean population exposure to PM2.5 from anthropogenic sources could be reduced by about 75% relative to 2015 and brought well below the WHO guideline in large areas of the world. While the implementation of the proposed technical measures is likely to be technically feasible in the future, the transformative changes of current practices will require strong political will, supported by a full appreciation of the multiple benefits. Improved air quality would avoid a large share of the current 3–9 million cases of premature deaths annually. At the same time, the measures that deliver clean air would also significantly reduce emissions of greenhouse gases and contribute to multiple UN sustainable development goals.
This article is part of a discussion meeting issue ‘Air quality, past present and future’.
The optical properties of PbSe nanocrystal quantum dots (NQDs) were studied as a function of applied hydrostatic pressure over the range from ambient to 5.4GPa. PbSe NQDs exhibit an energy gap that is dominated by quantum confinement. Despite such strong confinement, the authors find that the energy gaps of 3, 5, and 7nm diameter PbSe NQDs change monotonically with pressure with a dependence that is almost entirely determined by the bulk deformation potential. The sizable dependence of the NQD energy gap with pressure invites applications in the areas of high speed pressure sensing and tunable IR lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.