Abstract. This paper presents a comprehensive assessment of historical global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM 1 , PM 2.5 , PM 10 ), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source-and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5 • × 0.5 • longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included.We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO 2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM 2.5 , and less than 40 % for PM 10 , where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM 2.5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources.This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyo...
Time series of the deposition of acidifying substances are a pre-requisite for the study of the acidification and recovery of ecosystems such as surface waters. This paper reports the derivation and calculation of deposition trends of the potentially acidifying compounds SO 2 , NO x and NH 3 in sensitive freshwater regions in Europe studied in the EU-funded RECOVER:2010 project. The time interval covered is 151 years: from 1880, which can be considered as the pre-industrial era in most countries, to 2030, taking into account the consequences of current emission reduction agreements in Europe. The historic and predicted emissions for European countries are used to calculate the deposition development in the study areas, using meteorologically averaged atmospheric source-receptor transfer coefficients derived from the EMEP Lagrangian acid deposition model. These time series were used as driving forces for the application of the dynamic acidification model MAGIC to study the acidification and recovery of sensitive freshwater ecosystems in Europe.
Methane is the second most important greenhouse gas after carbon dioxide contributing to humanmade global warming. Keeping to the Paris Agreement of staying well below two degrees warming will require a concerted effort to curb methane emissions in addition to necessary decarbonization of the energy systems. The fastest way to achieve emission reductions in the 2050 timeframe is likely through implementation of various technical options. The focus of this study is to explore the technical abatement and cost pathways for reducing global methane emissions, breaking reductions down to regional and sector levels using the most recent version of IIASA's Greenhouse gas and Air pollution Interactions and Synergies (GAINS) model. The diverse human activities that contribute to methane emissions make detailed information on potential global impacts of actions at the regional and sectoral levels particularly valuable for policy-makers. With a global annual inventory for 1990-2015 as starting point for projections, we produce a baseline emission scenario to 2050 against which future technical abatement potentials and costs are assessed at a country and sector/technology level. We find it technically feasible in year 2050 to remove 54 percent of global methane emissions below baseline, however, due to locked in capital in the short run, the cumulative removal potential over the period 2020-2050 is estimated at 38 percent below baseline. This leaves 7.7 Pg methane released globally between today and 2050 that will likely be difficult to remove through technical solutions. There are extensive technical opportunities at low costs to control emissions from waste and wastewater handling and from fossil fuel production and use. A considerably more limited technical abatement potential is found for agricultural emissions, in particular from extensive livestock rearing in developing countries. This calls for widespread implementation in the 2050 timeframe of institutional and behavioural options in addition to technical solutions.
Institute 0fTechnology and Yale University Volume 2. Number 2 I SummaryThe lack of spatial differentiation in current life-cycle impact assessment (LCIA) affects the relevance o f the assessed impact.This article first describes a framework for constructing factors relating the region of emission to the acidifying impact on its deposition areas. Next, these factors are established for 44 European regions with the help of the RAINS model, an integrated assessment model that combines information on regional emission levels with information on long-range atmospheric transport to estimate patterns o f deposition and concentration for comparison with critical loads and thresholds for acidification, eutrophication via air; and tropospheric ozone formation.The application of the acidification factors in LCIA is very straightforward.The only additional data required, the geographical site of the emission, is generally provided by current life-cycle inventory analysis.The acidification factors add resolving power of a factor of 1,000 difference between the highest and lowest ratings, while the com-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.