In this paper, based on the Voigt-Kelvin constitutive model, nonlinear dynamic modelling and state space representation of a viscoelastic beam acting as a flexible robotic manipulator is investigated. Complete nonlinear dynamic modelling of a viscoelastic beam without premature linearisation of dynamic equations is developed. The adopted method is capable of reproducing nonlinear dynamic effects, such as beam stiffening due to centrifugal and Coriolis forces induced by rotation of the joints. Structural damping effects on the model's dynamic behaviour are also shown. A reliable model for a viscoelastic beam is subsequently presented. The governing equations of motion are derived using Hamilton's principle, and using the finite difference method, nonlinear partial differential equations are reduced to ordinary differential equations. For the purpose of flexible manipulator control, the standard form of state space equations for the viscoelastic link and the actuator is obtained. Simulation results indicate substantial improvements in dynamic behaviour, and a parameter sensitivity study is carried out to investigate the effect of structural damping on the vibration amplitude.
OPSOMMING'n Voigt-Kelvin saamgestelde model word in 'n nie-reglynige dinamiese oplossingsruimte gebruik om 'n soepel hanteringsrobot te ontleed. Die modellering is daartoe instaat om nielinêre dinamiese vertoning van styfheid wat ontstaan wees sentrifugale en Corioliskragte te ontleed. Die modelvergelykings is gebaseer op die Hamiltonbeginsel. Simulasieresultate toon betekenisvolle verbetering van sisteemgedrag. Verdere ontledings handel oor strukturele demping en vibrasie-amplitude.