We show that the optimal exercise boundary for the American put option with non-dividend-paying asset is convex. With this convexity result, we then give a simple rigorous argument providing an accurate asymptotic behavior for the exercise boundary near expiry.KEY WORDS: American put option on a zero dividend asset, convexity of the early exercise boundary, free boundary problem, obstacle problem, near-expiry estimates.
The binomial tree method, first proposed by Cox, Ross, and Rubinstein [Journal of Financial Economics, 7 (1979), pp. 229-263], is one of the most popular approaches to pricing options. By introducing an additional path-dependent variable, such methods can be readily extended to the valuation of path-dependent options. In this paper, using numerical analysis and the notion of viscosity solutions, we present a unifying theoretical framework to show the uniform convergence of binomial tree methods for European/American path-dependent options, including arithmetic average options, geometric average options, and lookback options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.