a b s t r a c tThermal actuators are extensively used in microelectromechanical systems (MEMS). Heat transfer through and around these microstructures are very complex. Knowing and controlling them in order to improve the performance of the micro-actuator, is currently a great challenge. This paper deals with this topic and proposes a dynamic thermal modelling of thermal micro-actuators. Thermal problems may be modelled using electrical analogy. However, current equivalent electrical models (thermal networks) are generally obtained considering only heat transfers through the thickness of structures having considerable height and length in relation to width (walls). These models cannot be directly applied to microactuators. In fact, micro-actuator configurations are based on 3D beam structures, and heat transfers occur through and around length. New dynamic and static thermal networks are then proposed in this paper. The validities of both types of thermal networks have been studied. They are successfully validated by comparison with finite elements simulation and analytical calculations.