In the framework of artificial or synthetic cell development, giant liposomes are common basic structures. Their enclosed membrane permits to encapsulate proteins, DNA, reactants, etc while its phospholipid nature allows some exchanges with the surrounding medium. Biochemical reactions induced inside giant liposomes or vesicles are often monitored or imaged by fluorescence microscopy techniques. Here, we show that electrochemistry performed with ultramicroelectrodes is perfectly suitable to monitor an enzymatic reaction occurring in a single giant unilamellar vesicle. Glucose oxidase (GOx) was micro-injected inside individual vesicles containing 1 mM glucose. H2O2 was thus generated in the vesicle and progressively diffused across the membrane toward the surrounding environment. An ultramicroelectrode sensitive to H2O2 (black platinum-modified carbon surface) was placed next to the membrane and provided a direct detection of the hydrogen peroxide flux generated by the enzyme activity. Electrochemistry offered a highly sensitive (in situ detection), selective (potential applied at the electrode), time-resolved analysis (chronoamperometry) of the GOx activity over an hour duration, without modifying the internal GUV medium. These results demonstrate that electroanalysis with microsensors is well adapted and complementary to fluorescence microscopy to sense enzymatic activities, for instance generating Reactive Oxygen Species, at single vesicles further used to develop artificial cells. can be easily manipulated individually and observed by optical microscopies (fluorescence microscopy in particular). Consequently, GUVs offer an excellent platform to study the enzymatic generation of ROS or RNS in minimal cells.