Abstract:The microstructures and tensile properties of as-cast and as-extruded Mg-4Sm-xZn-0.5Zr (x = 0, 1, 2, 3, 4 wt %) alloys were systematically investigated by optical microscope, X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Numerous nanoscale dynamic precipitates could be observed in the as-extruded alloys containing high content of Zn, and the nanoscale particles were termed as (Mg,Zn) 3 Sm phase. Some basal disc-like precipitates were observed in as-extruded Mg-4Sm-4Zn-0.5Zr alloy, which were proposed to have a hexagonal structure with a = 0.556 nm. The dynamic precipitates effectively pinned the motions of DRXed (dynamic recrystallized) grain boundaries leading to an obvious reduction of DRXed grain size, and the tensile yield strength of as-extruded alloy was improved. The as-extruded Mg-4Sm-4Zn-0.5Zr alloy exhibits the best comprehensive mechanical properties at room temperature among all the alloys, and the yield strength, ultimate tensile strength and elongation are about 246 MPa, 273 MPa and 21% respectively.