Cognitive deficits in Parkinson's disease are thought to be related to altered functional brain connectivity. To date, cognitive-related changes in Parkinson's disease have never been explored with dense-EEG with the aim of establishing a relationship between the degree of cognitive impairment, on the one hand, and alterations in the functional connectivity of brain networks, on the other hand.This study was aimed at identifying altered brain networks associated with cognitive phenotypes in Parkinson's disease using dense-EEG data recorded during rest with eyes closed. Three groups of Parkinson's disease patients (N = 124) with different cognitive phenotypes coming from a data-driven cluster analysis, were studied: G1) cognitively intact patients (63), G2) patients with mild cognitive deficits (46) and G3) patients with severe cognitive deficits (15). Functional brain networks were identified using a dense-EEG source connectivity method. Pairwise functional connectivity was computed for 68 brain regions in different EEG frequency bands. Network statistics were assessed at both global (network topology) and local (inter-regional connections) level.Results revealed progressive disruptions in functional connectivity between the three patient groups, typically in the alpha band. Differences between G1 and G2 (p < 0.001, corrected using permutation test) were mainly frontotemporal alterations. A statistically significant correlation (ρ = 0.49, p < 0.001) was also obtained between a proposed network-based index and the patients' cognitive score. Global properties of network topology in patients were relatively intact.These findings indicate that functional connectivity decreases with the worsening of cognitive performance and loss of frontotemporal connectivity may be a promising neuromarker of cognitive impairment in Parkinson's disease.