This article presents a procedure that simplifies an offshore jacket platform as a non-uniform cantilever beam subjected to an axial force. A Ritz method combined with a pseudo-excitation method is then used to analyze the responses of the jacket platform under random wave loads with the associated power spectral densities, variances and higher spectral moments. The theoretical basis and pertinent governing equations are derived. The proposed procedure not only eases the process of determining the pseudo wave loads, but also requires only the rudimentary structural details that are typically available at the preliminary design stage. Additionally, the merit of the proposed procedure is that the process does not require one to compute the normal modes, which saves time and is particularly convenient for the dynamic-response analysis of a complex structure (such as an offshore platform). An illustrative example based on a three-deck jacket platform is presented to demonstrate the procedure used to obtain the power spectral densities, variances and second spectral moments of jacket-top displacement and the bending moment of the jacket at the mud line. The results obtained are compared with those obtained using a Finite Element Mothed (FEM) model. Based on the findings of the study and good agreement shown in the comparison of results, it is concluded that the proposed method is effective, simple and convenient, and can be a useful tool for the preliminary design analysis of offshore platforms.