In this work, an improved semi-analytical technique is adopted to track the dynamic response of thin rectangular plates excited by sequential traveling masses. This technique exploits a so-called indirect definition of inertial interaction between the moving masses and the plate and leads to a reduction, in the equations of motion, of the number of time-varying coefficients linked to the changing position of the masses. By employing this optimized method, the resonance of the plate can be obtained according to a parametric study of relevant maximum dynamic amplification factor. For the case of evenly spaced, equal masses travelling along a straight line, the resonance velocity of the masses themselves is also approximately predicted via a fast methodology based on the fundamental frequency of the system only.