This paper is focused on the behavior of boring bars with a passive dynamic vibration absorber (DVA) for chatter suppression. The boring bar was modeled as a cantilever Euler-Bernoulli beam and only its first mode of vibration was considered. The stability of the two-degree-of-freedom model was analyzed constructing the stability diagram, dependent on the bar characteristics and on the absorber parameters (mass, stiffness, damping, and position). Two analytical approaches for tuning the absorber parameters were compared. The selection criterion consisted on the maximization of the minimum values of the stability-lobes diagram. Subsequent analysis performed in this work, allowed formulating of new analytical expressions for the tuning frequency improving the behavior of the system against chatter.