Life requires orchestrated control of cell proliferation, cell maintenance, and cell death. Involved in these decisions are protein complexes that assimilate a variety of inputs that report on the status of the cell and lead to an output response. Among the proteins involved in this response are nutrient-deprivation autophagy factor-1 (NAF-1)-and Bcl-2. NAF-1 is a homodimeric member of the novel Fe-S protein NEET family, which binds two 2Fe-2S clusters. NAF-1 is an important partner for Bcl-2 at the endoplasmic reticulum to functionally antagonize Beclin 1-dependent autophagy [Chang NC, Nguyen M, Germain M, Shore GC (2010) EMBO J 29 (3):606-618]. We used an integrated approach involving peptide array, deuterium exchange mass spectrometry (DXMS), and functional studies aided by the power of sufficient constraints from direct coupling analysis (DCA) to determine the dominant docked conformation of the NAF-1-Bcl-2 complex. NAF-1 binds to both the pro-and antiapoptotic regions (BH3 and BH4) of Bcl-2, as demonstrated by a nested protein fragment analysis in a peptide array and DXMS analysis. A combination of the solution studies together with a new application of DCA to the eukaryotic proteins NAF-1 and Bcl-2 provided sufficient constraints at amino acid resolution to predict the interaction surfaces and orientation of the protein-protein interactions involved in the docked structure. The specific integrated approach described in this paper provides the first structural information, to our knowledge, for future targeting of the NAF-1-Bcl-2 complex in the regulation of apoptosis/ autophagy in cancer biology.ife requires a controlled balance of energy conversion and utilization. These critical processes are governed by an elaborate set of reactions involving numerous protein-protein interactions. Among them is the ability of organisms to control the recycling of high-energy compounds and to control cell proliferation. These processes are, at least in part, under the control of cell survival and programmed cell death (autophagic and apoptotic) processes. Misregulation of these processes leads to many diseases, including cancer. Among the key proteins involved in these processes are Bcl-2 (1, 2) and the more recently identified iron-sulfur (Fe-S) protein nutrient-deprivation autophagy factor-1 (NAF-1) (also known as Cisd2, Miner1, Eris, and Noxp70) (3-5).NAF-1 is important for human health and disease. Missplicing of NAF-1 causes Wolfram syndrome 2 (6). NAF-1 is also functionally linked to the regulation of autophagy in cancer, and aging (3-5, 7, 8). This protein is a member of the 2Fe-2S cluster NEET family. NAF-1 has a similar backbone fold and 3Cys-1His coordination of the 2Fe-2S cluster as found in the founding member of the NEET family, mitoNEET (mNT). NAF-1 differs from mNT in the distribution of charged and aromatic surface residues (9, 10). These differences alter the 3D shape and electrostatics of the surfaces of mNT and NAF-1, leading to interactions with distinct binding partners. In fact, recent work identifi...