BackgroundBoth short and long-term exposure to traffic-related air pollutants have been associated with asthma and reduced lung function. We hypothesized that short-term indoor exposure to fine particulate matter <2.5 μm (PM2.5) and vanadium (V) would be associated with altered buccal cell DNA methylation of targeted asthma genes and decreased lung function among urban children in a nested subcohort of African American and Dominican children.MethodsSix day integrated levels of air pollutants were measured from children’s homes (age 9–14; n = 163), repeated 6 months later (n = 98). Buccal samples were collected repeatedly during visits. CpG promoter loci of asthma genes (i.e., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A), arginase 2 (ARG2)) were pyrosequenced and lung function was assessed.ResultsExposure to V, but not PM2.5, was associated with lower DNA methylation of IL4 and IFNγ. In exploratory analyses, V levels were associated with lower methylation of the proinflammatory NOS2A-CpG+5099 among asthmatic overweight or obese children but not nonasthmatics. Short-term exposure to PM2.5, but not V, appeared associated with lower lung function (i.e., reduced z-scores for forced expiratory volume in one second (FEV1, FEV1/ forced vital capacity [FEV1/FVC] and forced expiratory flow at 25–75% of FVC [FEF25–75]).ConclusionsExposure to V was associated with altered DNA methylation of allergic and proinflammatory asthma genes implicated in air pollution related asthma. However, short-term exposure to PM2.5, but not V, appeared associated with decrements in lung function among urban children.Electronic supplementary materialThe online version of this article (doi:10.1186/s12931-017-0550-9) contains supplementary material, which is available to authorized users.
BackgroundAsthma gene DNA methylation may underlie the effects of air pollution on airway inflammation. However, the temporality and individual susceptibility to environmental epigenetic regulation of asthma has not been fully elucidated. Our objective was to determine the timeline of black carbon (BC) exposure, measured by personal sampling, on DNA methylation of allergic asthma genes 5 days later to capture usual weather variations and differences related to changes in behavior and activities. We also sought to determine how methylation may vary by seroatopy and cockroach sensitization and by elevated fractional exhaled nitric oxide (FeNO).MethodsPersonal BC levels were measured during two 24-h periods over a 6-day sampling period in 163 New York City children (age 9–14 years), repeated 6 months later. During home visits, buccal cells were collected as noninvasive surrogates for lower airway epithelial cells and FeNO measured as an indicator of airway inflammation. CpG promoter loci of allergic asthma genes (e.g., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A)), arginase 2 (ARG2)) were pyrosequenced at the start and end of each sampling period.ResultsHigher levels of BC were associated with lower methylation of IL4 promoter CpG−48 5 days later. The magnitude of association between BC exposure and demethylation of IL4 CpG−48 and NOS2A CpG+5099 measured 5 days later appeared to be greater among seroatopic children, especially those sensitized to cockroach allergens (RR [95% CI] 0.55 [0.37–0.82] and 0.67 [0.45–0.98] for IL4 CpG−48 and NOS2A CpG+5099, respectively), compared to non-sensitized children (RR [95% CI] 0.87 [0.65–1.17] and 0.95 [0.69–1.33] for IL4 CpG−48 and NOS2A CpG+5099, respectively); however, the difference was not statistically different. In multivariable linear regression models, lower DNA methylation of IL4 CpG−48 and NOS2A CpG+5099 were associated with increased FeNO.ConclusionsOur results suggest that exposure to BC may exert asthma proinflammatory gene demethylation 5 days later that in turn may link to airway inflammation. Our results further suggest that seroatopic children, especially those sensitized to cockroach allergens, may be more susceptible to the effect of acute BC exposure on epigenetic changes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-017-0361-3) contains supplementary material, which is available to authorized users.
BackgroundPhysical activity is associated with improvement in lung function; however, pollution exposure during physical activity can lead to a transient reduction in lung function. This paradoxical relationship may be linked to altered T regulatory (Treg) cell activity, which increases with exercise and suppresses airway inflammation, but decreases in association with exposure to air pollution. To clarify these relationships, we investigated buccal cell DNA methylation of the forkhead box p3 (FOXP3) gene promoter, a proposed biomarker of Treg activity. We hypothesized that active urban children would have lower FOXP3 promoter methylation, associated with better lung function compared to non-active children. We also hypothesized that this relationship would be attenuated by high exposure to the air pollutant black carbon (BC).MethodsWe performed a cross-sectional study of 135 children ages 9–14 who live in New York City. Activity was measured across 6 days. BC exposure was assessed by personal monitors worn for two 24-h periods, followed by lung function assessment. Buccal swabs were collected for DNA methylation analysis of three regions (six CpG sites) in the FOXP3 promoter.ResultsIn multivariable regression models, overall, there was no significant relationship between physical activity and FOXP3 promoter methylation (p > 0.05). However, in stratified analyses, among children with higher BC exposure (≥1200 ng/m3), physical activity was associated with 2.37% lower methylation in promoter 2 (CpGs −77, −65, and −58) (β estimate = −2.37%, p < 0.01) but not among those with lower BC exposure (β estimate = 0.54%, p > 0.05). Differences across strata were statistically significant (p interaction = 0.04). Among all children, after controlling for BC concentration, promoter 2 methylation was associated with reduced FEV1/FVC (β estimate = −0.40%, p < 0.01) and reduced FEF25–75% (β estimate = −1.46%, p < 0.01).ConclusionsPhysical activity in urban children appeared associated with lower FOXP3 promoter methylation, a possible indicator of greater Treg function, under conditions of high BC exposure. Reduced FOXP3 promoter methylation was associated with higher lung function. These findings suggest that physical activity may induce immunologic benefits, particularly for urban children with greater risk of impaired lung function due to exposure to higher air pollution. FOXP3 promoter buccal cell methylation may function as a useful biomarker of that benefit.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-017-0364-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.