Concentrations of elemental carbon (EC) were measured in a 150 yr sediment record collected from Lake Chaohu in Anhui Province, eastern China, using three different thermal analytical methods: IMPROVE_A thermal optical reflectance (TOR), STN_thermal optical transmittance (TOT), and chemothermal oxidation (CTO). Distribution patterns for EC concentrations are different among the three methods, most likely due to the operational definition of EC and different temperature treatments prescribed for each method. However, similar profiles were found for high-temperature EC fractions among different methods. Historical soot(TOR) (high-temperature EC fractions measured by the IMPROVE_A TOR method) from Lake Chaohu exhibited stable low concentrations prior to the late 1970s and a sharp increase thereafter, corresponding well with the rapid industrialization of China in the last three decades. This may suggest that high-temperature thermal protocols are suitable for differentiating between soot and other carbon fractions. A similar soot(TOR) record was also obtained from Lake Taihu (~200 km away), suggesting a regional source of soot. The ratio of char(TOR) (low-temperature EC fraction measured by the IMPROVE_A TOR method, after correction for pyrolysis) to soot(TOR) in Lake Chaohu shows an overall decreasing trend, consistent with gradual changes in fuel use from wood burning to increasing fossil fuel combustions. Average higher char(TOR)/soot(TOR) was observed in Lake Taihu than in Lake Chaohu in the past 150 years, consistent with the longer and more extensive industrialization around the Taihu region.
Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)2.5 were measured over two-weeks in a cohort of 5–6 year old children (n=334) living in New York City’s Northern Manhattan and the Bronx between October 2005 and April 2010. The objectives were to: 1) characterize seasonal changes in indoor and outdoor levels and indoor/outdoor (I/O) ratios of PAH (gas + particulate phase; dichotomized into Σ8PAHsemivolatile (MW 178–206), and Σ8PAHnonvolatile (MW 228–278)), Abs, and PM2.5; and 2) assess the relationship between PAH and ozone. Results showed that heating compared to nonheating season was associated with greater Σ8PAHnonvolatile (p<0.001) and Abs (p<0.05), and lower levels of Σ8PAHsemivolatile (p<0.001). In addition, the heating season was associated with lower I/O ratios of Σ8PAHnonvolatile and higher I/O ratios of Σ8PAHsemivolatile (p<0.001) compared to the nonheating season. In outdoor air, Σ8PAHnonvolatile was correlated negatively with community-wide ozone concentration (p<0.001). Seasonal changes in emission sources, air exchanges, meteorological conditions and photochemical/chemical degradation reactions are discussed in relationship to the observed seasonal trends.
Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM)to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [FI/(FI + Py)] provide additional source discrimination throughoutthe core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both FI/(FI + Py) and 1,7/ (1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.