Abstract. The traveling salesman problem (TSP) is one of the most widely studied NP-hard combinatorial optimization problems. Its statement is deceptively simple, and yet it remains one of the most challenging problems and traditional genetic algorithm trapped into the local minimum easily for solving this problem. Therefore, based on a simple genetic algorithm and combine the base ideology of orthogonal test then applied it to the population initialization, crossover operator, as well as the introduction of adaptive orthogonal local search to prevent local convergence to form a new orthogonal genetic algorithm. The new algorithm shows great efficiency in solving TSP with the problem scale under 300 under the experiment results analyze.