Optical nonreciprocity and nonreciprocal propagation of light have attracted great research interest, due to not only their fundamental scientific significance, but also their extensive applications in lasing, quantum optical devices and quantum information. In this work, we theoretically and experimentally investigate nonreciprocal propagation of light in a V-type three-level thermal atomic system. By virtue of the EIT effect and the atom thermal motion, nonreciprocal propagation of light is achieved in the Rb87 warm atoms, where high transmission of the probe field is achieved in the co-propagation direction of the control field and the probe field is blocked in the opposite direction of the control field. Transmission and bandwidth for the nonreciprocal propagation of light can be enhanced and controlled by the control field in this system, where the nonreciprocal band width can be broadened significantly in comparison with the Λ-type atomic system. In our experiments, we achieve ~60 MHz nonreciprocal bandwidth for the probe field. This work may have potential applications in quantum nonreciprocal devices such as optical isolator and circulator. on integration of devices.Great efforts dedicate to searching for alternative approaches and mechanisms to break reciprocity without the use of magnetism, especially those for suitable on-chip integration. A photonic band gap material with the combination of linear and nonlinear medium response previously proposed to support unidirectional propagation and optical diode [7]. Spatiotemporal modulation of refractive index of materials is one promising approach for this purpose, which generates optical nonreciprocity via introducing nonreciprocal phase transfer [8,9] and frequency conversion [10,11],