In this paper, the optimal power flow (OPF) problem is augmented to account for the costs associated with the loadfollowing control of a power network. Load-following control costs are expressed through the linear quadratic regulator (LQR). The power network is described by a set of nonlinear differential algebraic equations (DAEs). By linearizing the DAEs around a known equilibrium, a linearized OPF that accounts for steadystate operational constraints is formulated first. This linearized OPF is then augmented by a set of linear matrix inequalities that are algebraically equivalent to the implementation of an LQR controller. The resulting formulation, termed LQR-OPF, is a semidefinite program which furnishes optimal steady-state setpoints and an optimal feedback law to steer the system to the new steady state with minimum load-following control costs. Numerical tests demonstrate that the setpoints computed by LQR-OPF result in lower overall costs and frequency deviations compared to the setpoints of a scheme where OPF and loadfollowing control are considered separately.Index Terms-Optimal power flow, load-following control, linear quadratic regulator, semidefinite programming.