The power grid is rapidly transforming, and while recent grid innovations increased the utilization of advanced control methods, the next-generation grid demands technologies that enable the integration of distributed energy resources (DERs)and consumers that both seamlessly buy and sell electricity. This paper develops an optimization model and blockchainbased architecture to manage the operation of crowdsourced energy systems (CES), with peer-to-peer (P2P) energy trading transactions. An operational model of CESs in distribution networks is presented considering various types of energy trading transactions and crowdsourcees. Then, a two-phase operation algorithm is presented: Phase I focuses on the day-ahead scheduling of generation and controllable DERs, whereas Phase II is developed for hour-ahead or real-time operation of distribution networks. The developed approach supports seamless P2P energy trading between individual prosumers and/or the utility. The presented operational model can also be used to operate islanded microgrids. The CES framework and the operation algorithm are then prototyped through an efficient blockchain implementation, namely the IBM Hyperledger Fabric. This implementation allows the system operator to manage the network users to seamlessly trade energy. Case studies and prototype illustration are provided.
Abstract-Phasor measurement units (PMUs) can be effectively utilized for the monitoring and control of the power grid. As the cyber-world becomes increasingly embedded into power grids, the risks of this inevitable evolution become serious. In this paper, we present a risk mitigation strategy, based on dynamic state estimation, to eliminate threat levels from the grid's unknown inputs and potential cyber-attacks. The strategy requires (a) the potentially incomplete knowledge of power system models and parameters and (b) real-time PMU measurements. First, we utilize a dynamic state estimator for higher order depictions of power system dynamics for simultaneous state and unknown inputs estimation. Second, estimates of cyber-attacks are obtained through an attack detection algorithm. Third, the estimation and detection components are seamlessly utilized in an optimization framework to determine the most impacted PMU measurements. Finally, a risk mitigation strategy is proposed to guarantee the elimination of threats from attacks, ensuring the observability of the power system through available, safe measurements. Case studies are included to validate the proposed approach. Insightful suggestions, extensions, and open problems are also posed.
Dynamic state estimation (DSE) accurately tracks the dynamics of a power system and provides the evolution of the system state in real-time. This paper focuses on the control and protection applications of DSE, comprehensively presenting different facets of control and protection challenges arising in modern power systems. It is demonstrated how these challenges are effectively addressed with DSE-enabled solutions. As precursors to these solutions, reformulation of DSE considering both synchrophasor and sampled value measurements and comprehensive comparisons of DSE and observers have been presented. The usefulness and necessity of DSE based solutions in ensuring system stability, reliable protection and security, and resilience by revamping of control and protection methods are shown through examples, practical applications, and suggestions for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.