This paper summarizes the technical activities of the Task Force on Power System Dynamic State and Parameter Estimation. This Task Force was established by the IEEE Working Group on State Estimation Algorithms to investigate the added benefit of dynamic state and parameter estimation for the enhancement of the reliability, security, and resilience of electric power systems. The motivations and engineering values of dynamic state estimation (DSE) are discussed in detail. Then, a set of potential applications that will rely on DSE is presented and discussed. Furthermore, a unifie framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, tracking state estimation and static state estimation. An overview of the current progress in DSE and dynamic parameter estimation is provided. The paper also provides future research needs and directions for the power engineering community.
This paper proposes a graphic modeling approach, fault diagnosis method based on fuzzy reasoning spiking neural P systems (FDSNP), for power transmission networks. In FDSNP, fuzzy reasoning spiking neural P systems (FRSN P systems) with trapezoidal fuzzy numbers are used to model candidate faulty sections and an algebraic fuzzy reasoning algorithm is introduced to obtain confidence levels of candidate faulty sections, so as to identify faulty sections. FDSNP offers an intuitive illustration based on a strictly mathematical expression, a good fault-tolerant capacity due to its handling of incomplete and uncertain messages in a parallel manner, a good description for the relationships between protective devices and faults, and an understandable diagnosis model-building process. To test the validity and feasibility of FDSNP, seven cases of a local subsystem in an electrical power system are used. The results of case studies show that FDSNP is effective in diagnosing faults in power transmission networks for single and multiple fault situations with/without incomplete and uncertain SCADA data, and is superior to four methods, reported in the literature, in terms of the correctness of diagnosis results.Index Terms-Electric power system, fault diagnosis, fuzzy production rules, fuzzy reasoning, fuzzy reasoning spiking neural P system, linguistic term, trapezoidal fuzzy number.
Power system dynamic state estimation (DSE) remains an active research area. This is driven by the absence of accurate models, the increasing availability of fast-sampled, timesynchronized measurements, and the advances in the capability, scalability, and affordability of computing and communications. This paper discusses the advantages of DSE as compared to static state estimation, and the implementation differences between the two, including the measurement configuration, modeling framework and support software features. The important roles of DSE are discussed from modeling, monitoring and operation aspects for today's synchronous machine dominated systems and the future power electronics-interfaced generation systems. Several examples are presented to demonstrate the benefits of DSE on enhancing the operational robustness and resilience of 21st century power system through time critical applications. Future research directions are identified and discussed, paving This work was partially supported by US Department of Energy under Advanced Grid Modernization Program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.