Background
Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation.
Results
Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks.
Conclusions
The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.