2014
DOI: 10.1137/140971099
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics of Coupled Noisy Neural Oscillators with Heterogeneous Phase Resetting Curves

Abstract: Pulse-coupled phase oscillators have been utilized in a variety of contexts. Motivated by neuroscience, we study a network of pulse-coupled phase oscillators receiving independent and correlated noise. An additional physiological attribute, heterogeneity, is incorporated in the phase-resetting curve (PRC), which is a vital entity for modeling the biophysical dynamics of oscillators. An accurate probability density or mean field description is large-dimensional, requiring reduction methods for tractability. We … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2015
2015
2019
2019

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 63 publications
0
5
0
Order By: Relevance
“…Without recourse to a phase reduction it is well to mention that Medvedev has been pioneering a phase–amplitude approach to studying the effects of noise on the synchronisation of coupled stochastic limit-cycle oscillators [ 194 , 279 ], and that Newhall et al have developed a Fokker–Planck approach to understanding cascade-induced synchrony in stochastically driven IF networks with pulsatile coupling and Poisson spike-train external drive [ 280 ]. More recent work on pairwise synchrony in network of heterogeneous coupled noisy phase oscillators receiving correlated and independent noise can be found in [ 281 ]. However, note that even in the absence of synaptic coupling, two or more neural oscillators may become synchronised by virtue of the statistical correlations in their noisy input streams [ 282 284 ].…”
Section: Stochastic Oscillator Modelsmentioning
confidence: 99%
“…Without recourse to a phase reduction it is well to mention that Medvedev has been pioneering a phase–amplitude approach to studying the effects of noise on the synchronisation of coupled stochastic limit-cycle oscillators [ 194 , 279 ], and that Newhall et al have developed a Fokker–Planck approach to understanding cascade-induced synchrony in stochastically driven IF networks with pulsatile coupling and Poisson spike-train external drive [ 280 ]. More recent work on pairwise synchrony in network of heterogeneous coupled noisy phase oscillators receiving correlated and independent noise can be found in [ 281 ]. However, note that even in the absence of synaptic coupling, two or more neural oscillators may become synchronised by virtue of the statistical correlations in their noisy input streams [ 282 284 ].…”
Section: Stochastic Oscillator Modelsmentioning
confidence: 99%
“…( 2016 ), Burton et al. ( 2012 ), Fernandez and Tsimring ( 2014 ), Ly ( 2014 ), Ly and Ermentrout ( 2011 ).…”
Section: Introductionmentioning
confidence: 98%
“…Indeed, broad cell-to-cell differences in PRCs have been recently measured in the olfactory bulb mitral cells (Burton et al 2012), and given that the collective phase dynamics of a synchronized ensemble of oscillators depends crucially on the level of PRC heterogeneity (Nakao et al 2018), it is desirable to deepen our understanding on the effects of heterogeneous PRCs on collective synchronization. However, due to its mathematical complexity, previous attempts to tackle oscillator ensembles with heterogeneous PRCs are scarce, and rely on approximate methods (Tsubo, Teramae & Fukai 2007, Ly 2014.…”
Section: Introductionmentioning
confidence: 99%