Abstract:The theory of Fatou and Julia is extended to include the dynamics of functions f which are meromorphic in \widehat{\mathbb{C}} outside a totally disconnected compact set E(f) at whose points the cluster set of f is \widehat{\mathbb{C}}. The Julia set is defined not only by the standard approach but is also characterized in terms of the set of points whose orbits approach a point of E(f). For the subclass where E(f) has a complement of class OAD and the inverse of f has a finite set of singular points it is sho… Show more
“…In Section 3 we prove Theorem A which generalize a result given by Baker, Domínguez and Herring in [7].…”
Section: The Set Of Singular Values Of F ∈ Hol(x Y ) Is Sv (F ) = C(mentioning
confidence: 62%
“…For functions in class M ∩ S M there are neither wandering domains nor Baker domains [7]. Since the proofs remain valid for functions in class K ∩ S K we do not prove them.…”
Section: Proof Of Theorem Amentioning
confidence: 89%
“…We follow and verfy that the proof given in [7] for functions in class M ∩ S M works with some changes for functions in class A, where f is typical.…”
“…In Section 3 we prove Theorem A which generalize a result given by Baker, Domínguez and Herring in [7].…”
Section: The Set Of Singular Values Of F ∈ Hol(x Y ) Is Sv (F ) = C(mentioning
confidence: 62%
“…For functions in class M ∩ S M there are neither wandering domains nor Baker domains [7]. Since the proofs remain valid for functions in class K ∩ S K we do not prove them.…”
Section: Proof Of Theorem Amentioning
confidence: 89%
“…We follow and verfy that the proof given in [7] for functions in class M ∩ S M works with some changes for functions in class A, where f is typical.…”
“…This falls short, since we are considering here a function g with infinitely many essential singularities and infinitely many critical points. However, the more updated version of the Fatou Theorem provided by the following Lemma found in [1] (we formulate a special case of Lemma 10) is perfectly suited to our situation. For an exposition of the extensions of the Fatou theorem leading up to this modern formulation, see the survey [3].…”
Section: An Upper Bound For the Number Of Imagesmentioning
Using the Schwarz function of an ellipse, it was recently shown that galaxies with density constant on confocal ellipses can produce at most four "bright" images of a single source. The more physically interesting example of an isothermal galaxy has density that is constant on homothetic ellipses. In that case bright images can be seen to correspond to zeros of a certain transcendental harmonic mapping. We use complex dynamics to give an upper bound on the total number of such zeros.
“…Consequently f is a dynamically tame map. We would like to make it explicit that Bolsch maps form a special subclass of function meromorphic outside a small set; see [1] and [2] for its definition.…”
Section: Classes Of Examples Of Dynamically Tame Functionsmentioning
The classes of dynamically and geometrically tame functions meromorphic outside a small set are introduced. The Julia sets of geometrically tame functions are proven to be either geometrical circle (in C I ) or to have Hausdorff dimension strictly larger than 1. Vast classes of dynamically and geometrically tame functions are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.