Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)?Location: Eifel Mountains, West Germany.
Methods:The Rengen Grassland Experiment (RGE) was established in an oligotrophic grassland in 1941. Six fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl, CaNP-K 2 SO 4 , and unfertilized control) were applied annually in five complete randomized blocks. Species composition of experimental plots was sampled in 2006 and compared with constancy tables representing grassland types in a phytosociological monograph of a wider area. Each plot was matched to the most similar community type using the Associa method. Mean EIVs were calculated for each treatment.
Results:The control plots supported oligotrophic Nardus grassland of the Polygalo-Nardetum association (Violion caninae alliance). Vegetation in the Ca and CaN treatments mostly resembled montane meadow of GeranioTrisetetum (Polygono-Trisetion). Transitional types between Poo-Trisetetum and Arrhenatheretum (both from the Arrhenatherion alliance) developed in the CaNP treatment. In the CaNP-KCl and CaNP-K 2 SO 4 treatments, vegetation corresponded to the mesotrophic Arrhenatheretum meadow. Major discontinuity in species composition was found between control, Ca, and CaN treatments, and all treatments with P application. EIVs for both nutrients and soil reaction were considerably higher in P treatments than in Ca and CaN treatments. Surprisingly, the control plots had the lowest EIVs for continentality and moisture, although these factors had not been manipulated in the experiment.Conclusions: Long-term fertilizer application can create different plant communities belonging to different phytosociological alliances and classes, even within a distance of a few meters. Due to their correlated nature, EIVs can erroneously indicate changes in factors that actually did not change, but co-varied with factors that did change. In P-limited ecosystems, EIVs for nutrients may indicate availability of P rather than N.