To facilitate the maintenance and restoration of semi‐natural grasslands, it is important to understand their relationships with soil properties. Semi‐natural grasslands typically have a high incidence of stress‐tolerant species (measured here by high stress radius values), but not all have high species richness. Species richness and stress radius values were related to soil pH, Olsen extractable phosphorus (P), extractable potassium (K) and magnesium (Mg), total nitrogen (N) and organic matter (OM) at 571 sites representing a wide range oftemperate grasslands. Highest species richness (>30 m−2) occurred at pH > 6 and 4–15 mg l−1 P, but species richness was also highly variable at 4–15 mg l−1 P. At pH < 5, species richness was low (<20 m−2). Stress radius values were highest (mainly calcareous and heath grasslands and mires) at pH c. 8·0 and < 5·0, and at the lowest soil P levels (<5 mg l−1). A wide range of stress radius values occurred at low soil P levels because appropriate management is also needed to maintain semi‐natural grasslands. Reducing soil P is difficult in practice, so grassland restoration in the presence of elevated soil‐extractable P levels merits re‐assessment.
Questions: Has the species-rich vegetation of upland hay meadows been maintained under low intensity management imposed by an agri-environment scheme? Is the target plant community re-establishing where it has been modified previously by intensive agricultural practices? What combinations of management practices and soil properties are associated with changes towards or away from the target community? Location: The Pennines, northern England, UK. Methods: A survey of 116 hay meadows in 1987 was repeated in 2002 by recording plant species in permanent quadrats. Changes in community variables (species richness, Ellenberg values, upland hay meadow community coefficients) were analysed in species-rich, modified species-rich and degraded grassland types. Redundancy Analysis and Generalised Linear Models were used to show the relationship between management practices and soil properties and change in species composition and community variables. Results: Few sites contained the species-rich grassland type, and here forb richness declined. In the modified species-rich type, total and grass species richness increased but Ellenberg N-values also increased. Total and grass species richness increased in the degraded type and the community coefficient increased. Management was weakly related to change in species composition but showed clear relationships with the community variables. Re-establishment of the target species-rich community was more likely with late cutting, in the absence of cattle or prolonged spring grazing, and at lower soil nutrient status. Conclusion: The species-rich community was not maintained but some reversion occurred in degraded grassland. Inorganic fertiliser application and intensive spring grazing should be avoided and cutting delayed until late July.Nomenclature: Stace (1997).Abbreviations: ESA = Environmentally Sensitive Area; GLM = Generalised Linear Model; MG3 = Upland hay meadow plant community code; RDA = Redundancy Analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.