[1] Three different approaches to the evaluation of the electrostatic potential in the ionosphere under equatorial spread F (ESF) conditions are considered. First, we calculate the potential using an analytical approach, applying force balance laws to a simplified ionosphere. Second, we compute the potential around a cylinder-like plasma depletion in an idealized ionosphere using both the equipotential field line (EFL) approach and the full 3-D solution to the electrostatic potential problem. Our third approach involves an initial boundary value simulation in a realistic ionosphere using both EFL and 3-D potential solutions. The results show that the equipotential field line assumption does not fully capture the 3-D structure of the ionospheric current system and leads to an underestimation of the growth rate of ESF irregularities in numerical simulations. Citation: Aveiro, H. C., and D. L.Hysell (2012), Implications of the equipotential field line approximation for equatorial spread F analysis, Geophys. Res. Lett., 39, L11106,