Chromosome alignment and segregation during mitosis depends critically on kinetochoremicrotubule (kMT) attachments that are mediated by the function of the molecular motor cytoplasmic dynein, and the kinetochore microtubule (MT) binding complex, Ndc80. The RZZ (Rod-ZW10-Zwilch) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachment formation in C. elegans. However, the mechanism by which kMT attachments are controlled by the coordinated function of these protein complexes to drive chromosome motility during early mitosis is still unclear. In this manuscript, we provide evidence to show that Ndc80 and dynein directly antagonize each other's MT-binding. We also find that severe chromosome alignment defects induced by depletion of dynein, or the dynein adapter spindly, are rescued by codepletion of the RZZ component, Rod, in human cells. Interestingly, the rescue of chromosome alignments defects was independent of Rod function in activation of the spindle assembly checkpoint and was accompanied by a remarkable restoration of stable kMT attachments.Furthermore, rescue of chromosome alignment was critically dependent on the plus-end-directed motility of CENP-E, as cells codepleted of CENP-E along with Rod and dynein were unable to establish stable kMT attachments or align their chromosomes properly. Taken together, our findings support the idea that the dynein motor may control the function of the Ndc80 complex in stabilizing kMT attachments either directly by interfering with Ndc80-MT binding, and/or indirectly by modulating the Rod-mediated inhibition of Ndc80.peer-reviewed)