Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin's association with calcium (Ca 2+ ) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca 2+ ] or blocking L-type Ca 2+ channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca 2+ signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.excitation-contraction coupling | dihydropyridine receptor | triad junction | muscle injury D ysferlinopathies are degenerative myopathies secondary to mutations in the gene encoding the protein dysferlin. These myopathies, most commonly limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are independent of motor neuron activation (1), indicating that they are myogenic in origin. Dysferlin is a 230-kDa protein composed of seven C2 domains with homology to synaptotagmin (2, 3) and a single transmembrane domain near its C terminus (4, 5). The complexity of dysferlin's potential role in muscle is highlighted by the number of its purported functions, including membrane repair (2, 3), vesicle fusion (4), microtubule regulation (5, 6), cell adhesion (7,8), and intercellular signaling (9). Understanding the contributions of dysferlin to the maintenance of normal skeletal muscle function is critical for the development of appropriate therapies for patients diagnosed with LGMD2B and MM.Recently, we demonstrated the localization of dysferlin at the A-I junction in mature muscle fibers (10). These results agree with earlier reports associating dysferlin with the dihydropyridine receptor (DHPR, L-type Ca 2+ channel), Ahnak, caveolin 3, and several other proteins involved in Ca 2+ -based signaling and the function of transverse (t-) tubules (11)(12)(13)(14). Consistent with this localization and the potential for a functional role in this specialized compartment, dysferlin-deficient murine muscle demonstrates altered transverse tubule (t-tubule) structure (15) as well as increased oxidative stress (16, 17), inflammation, and necrosis (18-20) after injury.Here we demonstrate that dysferlin is enriched in the t-tubule membrane, where it contributes to the maintenance of the t-tubule and Ca 2+ homeostasis. We show...