Muscular dystrophy includes a diverse group of inherited muscle diseases characterized by wasting and weakness of skeletal muscle. Mutations in dysferlin are linked to two clinically distinct muscle diseases, limb-girdle muscular dystrophy type 2B and Miyoshi myopathy, but the mechanism that leads to muscle degeneration is unknown. Dysferlin is a homologue of the Caenorhabditis elegans fer-1 gene, which mediates vesicle fusion to the plasma membrane in spermatids. Here we show that dysferlin-null mice maintain a functional dystrophin-glycoprotein complex but nevertheless develop a progressive muscular dystrophy. In normal muscle, membrane patches enriched in dysferlin can be detected in response to sarcolemma injuries. In contrast, there are sub-sarcolemmal accumulations of vesicles in dysferlin-null muscle. Membrane repair assays with a two-photon laser-scanning microscope demonstrated that wild-type muscle fibres efficiently reseal their sarcolemma in the presence of Ca2+. Interestingly, dysferlin-deficient muscle fibres are defective in Ca2+-dependent sarcolemma resealing. Membrane repair is therefore an active process in skeletal muscle fibres, and dysferlin has an essential role in this process. Our findings show that disruption of the muscle membrane repair machinery is responsible for dysferlin-deficient muscle degeneration, and highlight the importance of this basic cellular mechanism of membrane resealing in human disease.
Dilated cardiomyopathy is a life-threatening syndrome that can arise from a myriad of causes, but predisposition toward this malady is inherited in many cases. A number of inherited forms of dilated cardiomyopathy arise from mutations in genes that encode proteins involved in linking the cytoskeleton to the extracellular matrix, and disruption of this link renders the cell membrane more susceptible to injury. Membrane repair is an important cellular mechanism that animal cells have developed to survive membrane disruption. We have previously shown that dysferlin deficiency leads to defective membrane resealing in skeletal muscle and muscle necrosis; however, the function of dysferlin in the heart remains to be determined. Here, we demonstrate that dysferlin is also involved in cardiomyocyte membrane repair and that dysferlin deficiency leads to cardiomyopathy. In particular, stress exercise disturbs left ventricular function in dysferlin-null mice and increases Evans blue dye uptake in dysferlin-deficient cardiomyocytes. Furthermore, a combined deficiency of dystrophin and dysferlin leads to early onset cardiomyopathy. Our results suggest that dysferlin-mediated membrane repair is important for maintaining membrane integrity of cardiomyocytes, particularly under conditions of mechanical stress. Thus, our study establishes what we believe is a novel mechanism underlying the cardiomyopathy that results from a defective membrane repair in the absence of dysferlin. IntroductionDilated cardiomyopathy is the most common type of cardiomyopathy, a condition that can often progress into heart failure and sudden death. Many cases of dilated cardiomyopathy have a genetic etiology. Indeed, inherited forms of idiopathic dilated cardiomyopathy account for at least 30% of dilated cardiomyopathy cases. These are a major cause of severe heart failure and necessitate heart transplantation (1). A number of genes encoding sarcomeric and cytoskeletal proteins have been identified as being responsible for dilated cardiomyopathy: cardiac actin, cardiac troponin T, β-myosin heavy chain, α-tropomyosin, α-actinin, titin, metavinculin, and desmin (reviewed in ref. 2). Mutations in genes such as dystrophin (3, 4), α-sarcoglycan (5), β-sarcoglycan (6), γ-sarcoglycan (7), and δ-sarcoglycan (8, 9), which encode proteins involved in linking the cytoskeleton, sarcolemma, and extracellular matrix, have also been identified as causes of some familial dilated cardiomyopathy. Such mutations lead to the disruption of the cytoskeleton-sarcolemma-extracellular matrix link and thus render the sarcolemma more susceptible to contraction-induced injury (10-12).The plasma membrane provides a physical barrier between the extracellular and intracellular environments, and the maintenance of this barrier is crucial for cell survival; however, plasma-membrane disruption occurs physiologically in certain types of cells,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.