An Electric Solar Wind Sail (E-sail) is a propellantless propulsion concept that extracts momentum from the high-speed solar wind stream to generate thrust. This paper investigates the performance of such a propulsion system in obtaining the transition from a prograde to a retrograde motion. The spacecraft is assumed to initially trace a circular heliocentric orbit of given radius. This particular trajectory, referred to as Circular Orbit Flip Trajectory (COFT), is analyzed in a two-dimensional mission scenario, by exploiting the capability of a medium-high performance E-sail to change the spacecraft angular momentum vector during its motion in the interplanetary space. More precisely, the paper describes a procedure to evaluate the E-sail optimal performance in a set of COFTs, by calculating their minimum flight times as a function of the sail reference propulsive acceleration. It is shown that a two-dimensional COFT can be generated by means of a simple steering law in which the E-sail nominal plane has a nearly fixed attitude with respect to an orbital reference system, for most of the time interval of the interplanetary transfer.