Airborne crop diseases cause great losses to agricultural production and can affect people’s physical health. Timely monitoring of the situation of airborne disease spores and effective prevention and control measures are particularly important. In this study, a two-stage separation and enrichment microfluidic chip with arcuate pretreatment channel was designed for the separation and enrichment of crop disease spores, which was combined with micro Raman for Raman fingerprinting of disease conidia and quasi identification. The chip was mainly composed of arc preprocessing and two separated enriched structures, and the designed chip was numerically simulated using COMSOL multiphysics5.5, with the best enrichment effect at W2/W1 = 1.6 and W4/W3 = 1.1. The spectra were preprocessed with standard normal variables (SNVs) to improve the signal-to-noise ratio, which was baseline corrected using an iterative polynomial fitting method to further improve spectral features. Raman spectra were dimensionally reduced using principal component analysis (PCA) and stability competitive adaptive weighting (SCARS), support vector machine (SVM) and back-propagation artificial neural network (BPANN) were employed to identify fungal spore species, and the best discrimination effect was achieved using the SCARS-SVM model with 94.31% discrimination accuracy. Thus, the microfluidic-chip- and micro-Raman-based methods for spore capture and identification of crop diseases have the potential to be precise, convenient, and low-cost methods for fungal spore detection.