This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding icesheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~ 800 m. Use of multiple cosmogenic isotopes on bedrock and erratics ( 26 Al, 10 Be, 21 Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback which can change ice-sheet thickness, extent and direction of flow. Indeed, as the sub-glacial troughs evolve over millions of years, they increase topographic relief and this changes the dynamics of the ice sheet.