The martensitic transformation was studied by in situ and ex situ experiments in two high-carbon, 0.54 and 0.74 wt pct C, steels applying three different cooling rates, 15 °C/s, 5 °C/s, and 0.5 °C/s, in the temperature range around Ms, to improve the understanding of the evolution of martensite tetragonality c/a and phase fraction formed during the transformation. The combination of in situ high-energy X-ray diffraction during controlled cooling and spatially resolved tetragonality c/a determination by electron backscatter diffraction pattern matching was used to study the transformation behavior. The cooling rate and the different Ms for the steels had a clear impact on the martensitic transformation with a decrease in average tetragonality due to stronger autotempering for a decreasing cooling rate and higher Ms. A slower cooling rate also resulted in a lower fraction of martensite at room temperature, but with an increase in fraction of autotempered martensite. Additionally, a heterogeneous distribution of martensite tetragonality was observed for all cooling rates.