Objective: Protein aggregation leading to central amyloid deposition is implicated in Parkinson’s disease (PD). During disease progression, inflammation and oxidative stress may well invoke humoral immunity against pathological aggregates of PD-associated α-synuclein. The aim was to investigate any possible concurrence between autoimmune responses to α-synuclein monomers, oligomers or fibrils with oxidative stress and inflammation. Methods: The formation of α-synuclein amyloid species was assessed by thioflavin-T assay and atomic force microscopy was employed to confirm their morphology. Serum autoantibody titers to α-synuclein conformations were determined by ELISA. Enzyme activity and concentrations of oxidative stress/inflammatory indicators were evaluated by enzyme and ELISA protocols. Results: In PD patient sera, a differential increase in autoantibody titers to α-synuclein monomers, toxic oligomers or fibrils was associated with boosted levels of the pro-inflammatory cytokine interleukin-6 and tumour necrosis factor-α, but a decrease in interferon-γ concentration. In addition, levels of malondialdehyde were elevated whilst those of glutathione were reduced along with decrements in the activity of the antioxidants: superoxide dismutase, catalase and glutathione transferase. Conclusions: It is hypothesized that the generation of α-synuclein amyloid aggregates allied with oxidative stress and inflammatory reactions may invoke humoral immunity protecting against dopaminergic neuronal death. Hence, humoral immunity is a common integrative factor throughout PD progression which is directed towards prevention of further neurodegeneration, so potential treatment strategies should attempt to maintain PD patient immune status.