“…As described in recent reviews (Huerta and Zhao, 2020 ; Cuoco et al, 2021 ), AI and high performance computing (HPC) as well as edge computing have been showcased to enable gravitational wave detection with the same sensitivity than template-matching algorithms, but orders of magnitude faster and at a fraction of the computational cost. At a glance, recent AI applications for gravitational wave astrophysics includes classification or signal detection (Gabbard et al, 2018 ; George and Huerta, 2018a , b ; Dreissigacker et al, 2019 ; Fan et al, 2019 ; Miller et al, 2019 ; Rebei et al, 2019 ; Beheshtipour and Papa, 2020 ; Deighan et al, 2020 ; Dreissigacker and Prix, 2020 ; Krastev, 2020 ; Li et al, 2020a ; Schäfer et al, 2020 , 2021 ; Skliris et al, 2020 ; Wang et al, 2020 ; Gunny et al, 2021 ; Lin and Wu, 2021 ; Schäfer and Nitz, 2021 ), signal denoising and data cleaning (Shen et al, 2019 ; Ormiston et al, 2020 ; Wei and Huerta, 2020 ; Yu and Adhikari, 2021 ), regression or parameter estimation (Gabbard et al, 2019 ; Chua and Vallisneri, 2020 ; Green and Gair, 2020 ; Green et al, 2020 ; Dax et al, 2021a , b ; Shen et al, 2022 ) Khan and Huerta 1 , accelerated waveform production (Chua et al, 2019 ; Khan and Green, 2021 ), signal forecasting (Lee et al, 2021 ; Khan et al, 2022 ), and early warning systems for gravitational wave sources that include matter, such as binary neutron stars or black hole-neutron star systems (Wei and Huerta, 2021 ; Wei et al, 2021a ; Yu et al, 2021 ).…”